Articoli correlati a Dynamical Systems on Homogeneous Spaces (190)

Dynamical Systems on Homogeneous Spaces (190) - Rilegato

 
Immagine non disponibile

Al momento non sono disponibili copie per questo codice ISBN.

Sinossi

A homogeneous flow is a dynamical system generated by the action of a closed subgroup H of a Lie group G on a homogeneous space of G. The study of such systems is of great significance because they constitute an algebraic model for more general and more complicated systems. Also, there are abundant applications to other fields of mathematics, most notably to number theory. The present book gives an extensive survey of the subject. In the first chapter the author discusses ergodicity and mixing of homogeneous flows. The second chapter is focused on unipotent flows, for which substantial progress has been made during the last 10-15 years. The culmination of this progress was M. Ratner's celebrated proof of far-reaching conjectures of Raghunathan and Dani. The third chapter is devoted to the dynamics of nonunipotent flows. The final chapter discusses applications of homogeneous flows to number theory, mainly to the theory of Diophantine approximations. In particular, the author describes in detail the famous proof of the Oppenheim-Davenport conjecture using ergodic properties of homogeneous flows.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Product Description

Book by Alexander N Starkov

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

  • EditoreAmer Mathematical Society
  • Data di pubblicazione2000
  • ISBN 10 0821813897
  • ISBN 13 9780821813898
  • RilegaturaCopertina rigida
  • LinguaInglese
  • Numero di pagine243

(nessuna copia disponibile)

Cerca:



Inserisci un desiderata

Non riesci a trovare il libro che stai cercando? Continueremo a cercarlo per te. Se uno dei nostri librai lo aggiunge ad AbeBooks, ti invieremo una notifica!

Inserisci un desiderata